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ABSTRACT
DERIVATION OF MAPPING FUNCTIONS
FOR STAR-SHAPED REGIONS

This report presents a simple method of deriving approximate mapping func-
tions in the form of low order polynomials, which conformally map an annular
region onto one whose lmner and outer boundaries are star shaped and circular.
The derivatlion 1is based on the Schwarz-Christoffel transformation.

Illustrations are carried out in detall for a number of typical star-shaped
regions. Some of the final results are presented by graphs, from which one may
readily derive a particular polynomial for the approximate mapping of a certain
class of star-shaped regions.
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DERIVATION OF MAPPING FUNCTIONS FOR
" STAR-SHAPED REGIONS
By Kwan Rim and Roger O. Stafford

Department of Mechanlics & Hydraulles
The University of Iowa
Iowa City, Iowa

SUMMARY

The purpose of this report is to present a simple method of derlving the
approximate mapping functions in the form of low order polynomials, which trans-
act the conformal mapping of annular reglions onto those whose inner and outer
boundaries are star-shaped and circular. Since the entire derivation 1is based
on the well-known Schwarz-Christoffel transformation, its application to a
practical problem 1s simple and straight forward., Compared to other approximate
methods of conformal mapping, the present method does provide simpler mapping
functions; namely, polynomials with a smaller number of terms.

Illustrations are carried out in detall for a number of typlcal star-shaped
regions., Some of the final results are presented by graphs, from which one may
readily derive a particular polynomial for the approximate mappling of a certaln
class of star-shaped regions.

INTRODUCTION

The main objective of this research project 1s to perform the elastic and
viscoelastic analysis of two-dimensional problems with star-shaped boundaries
by the method of complex variables. A successful appllication of this method
requires the derivation of a mappling function which maps a given region con-
formally onto a unit circle. Hence, the first phase of the research, covered
by this First Interim Report, is devoted to the development of a simple method
of deriving a satisfactory mapping function.

Since the exact mapping functlons are not derivable for many physical prob-
lems, a practical alternative 1s to make use of an approximate mapping functlon
which accomplishes the conformal mapping of a unit circle onto a region reasonably
congruent to a given star-shaped domain. The desirable characteristics of such an
approximate mapping function are: the reasonable congruency of the mapped to the
specified region and the simplicity of the mapping function. Since these two
characteristics are usually incompatible with each other, one has to seek a proper
compromise for a glven problem. '



The significance of the congruency is self-evident and does not require
any further explanation. The simplicity is also very important because a
complicated mapping function tends to diminish the merits of analytic solu-
tions. As the complexity of an-analytic solution increases, so does the
difficulty in comprehending its physical implications. It is also to be
noted that the numerical answers provided by a complicated analytical solu~
tion may be obtained by some reliable numerical methods with less computa-
tional effort.

A comprehensive treatment of approximate conformal mapping may be found
in the book by Kantorovich and Krylov (ref. 1). Numerous investigators (ref.
2 and 3), who have utilized the various methods of approximate mapping, have
reported that a polynomial with a very large number of terms is required to
accomplish a satisfactory mapping of a star-shaped region. The number of
terms runs from several dozen to a few hundred, For example, Parr (ref. 3)
reported that a polynomial with fifty terms was required to achieve a satis—
factory mapping of a fairly simple star,

The authors have found that a proper application of the well-known
Schwarz-Christoffel transformation to the star-shaped regions offers several
advantages. The first advantage is that this method is simple and may be
readily understood by an average analyst. The coefficients of the power
series are autcmatically determined and remain fixed, and they are related
to the physical parameters which control the size and shape of a star. The
second advantage is that it yields polynomlals with a considerably less
number of terms for certain kinds of stars. This can be accomplished by
examining the congruency and truncating the series according to a desired
accuracy. Another point of great significance is that all the polynomials
obtained through truncation do satisfy the condition of conformality auto-
matically.

Most of the other methods of approximate conformal mapping do not
possess these properties. In many cases, the coefficients of a polynomial
mapping function must be re-evaluated for every new approximation and some
methods require one to start with a polynomial with an enormously large
number of terms in order to ensure that the condition of conformality will
be satisfied.

For a clear i1llustration of the method, a simple star with four points
is chosen and the procedure is carried out in detall. Although it 1s simple,
it contains all the essential features. Some of the final results are pre-
sented in graphical form, which will allow one to select the proper poly-
nomial for the approximate mapping of a given class of stars, Besides this
example, a number of other stars have been investigated, and useful results
are briefly presented at the end.
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SYMBOLS

i /-1

Z, L Camplex nunbers; l.e., 2 = x + 1y

£(c) Mapping function

Z, T Conjugates of complex numbers; l.e., Z = x - 1y
m Nunmber of star points

Js ky, 1 Indices

Kj Exterior angle of the j-th vertex divided by =
n Degree cof a star

aj, bj’ . e e Images of vertices on the unit circle

Yj Spacings of images on the unit circle

F Polynomials of ¢

Sk Distance between adjacent vertices of a star

DERIVATION OF MAPPING FUNCTIONS

The conformal mapping of the exterior of a unit circle onto the exterior
of a closed polygon is accomplished by an application of the Schwarz-Christoffel
transformation and may be transacted by the following general formula (ref. 4):

1/t
- - 1 K> Km dg
Z-f(c)—A{ gy -0 (g, -8 ... (g, -12) =z 1)
0

K

in which A is a complex constant and Kj 1s related to the exterior angle of
the polygon at the vertex z'j by the factor of w. The sum of a2 polygon's
exterior angles being 2r, the summation of Kj is always two. Refer to
figure 1 for other detalls.

The applicability of the Schwarz-Christoffel transformation is supported
by the fact that any geometric figure may be closely approximated by a polygon

and that the symmetric nature of a star-shaped region greatly simpiifies the
final form of the mapping function. Hence, the use of this method involves an



¥ $ 1K,
nj /f§.z2

Unit circle on z-plane Polygon on z-plane

Figure l.-Mapping of the exterior of a unit circle onto the exterior of a
polygon.

approximation of an actually specified region by a polygon. The approximating
polygon 1s then mapped onto a unlt circle by the well-established method of the
Schwarz=Christoffel transformation. The detalls of this procedure and the re-
duction of the general mapping formula wlll be shown in the derivation of the
mapplng function for a specific example.

Consider a group of stars which may be well approximated by the type of
polygon shown in flgure 2. The mapping function for this kind of polygon is
sufficiently simple so as to facllitate a lucid illustration of the method,
yet it retains the basic characteristics of a general polygon. The 1llustra-
tion will be carried out in such a way that one will be able to derive an
approximate mapping function for an arbitrary star. For brevity, the word
"star" will be used in place of "star-shaped polygon."

Proper substitution and regrouping of terms in equation (1) reduces the
mapping function to

1/ Ky K
[(a; = 2)eeelay = 2)] ¢ [(b) - 2)eeulb - %)]

K, Ky
[(e, - r.)...(cm -z)] - [(d1 - 2)eeuld - z)]

K

[(£; = g)eau(f -g)] ?
x ! n 7 dag (2)

2
[(e; = ©)euale =021 2 ©
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Unit circle on z-plane Star-shaped polygon on z-plane

Figure 2.- Mapping of a polygonal star; m = number of star points, positive
KJ is counter clockwise,

in which aj, bJ, voe fJ are deflned by

ei'o

a, = s Dy =€y, ¢, =2, d, =€ 7, e

n
£, = ei(zﬁ'- Y1);

and by the general relationship

By = 845 g5 Cys dys €y, g3
(=1, 2, «.. m).

Intermediate steps of derivation are relatively simple; therefore, they are
omitted for the sake of conclse presentation.



It can be shown that

m am
(B = £)(8y = 8) ooe (B =) =T [8,et W D3 g,
J=1

Then by observing that a, and dm correspond to the m-th roots of +1
and -1 respectively, equation (2) reduces to

/¢ K K

( 0 1

Q- [l -™ - (M1~ «

K K, * 2
Jo =™ PP . (-1 B

1/¢ K - K

I
Q—
|

<
0 (1= - M-I F

and finally to

z K K
[1/ Q- -e ™M - ™My ! a
& . (3)

2

o (L=g™ 2@ -e MM - oY my 12

This integral, equation (3), cannot be evaluated in terms of elementary
functions. But a solution in the form of a power seriles can be obtalned by
expanding the integrand into a power series and integrating it term by term.
Expansion of the integrand is carried out by performing the binomial expan-
sion of each parenthesized quantity and then forming the product of all the
series. A general series associated with the J-th vertex can be developed
by expanding the quantity

K
[(1 - e ™3™y (1 - M™icM7J

in the following manner:

. K o —k- —iInYJk rﬂ)K o K
1-eimgmd_y (x, ce) . o
1-e (1] T
(1 - i3 m)KJ c1s 8 —-'—!)-k'l (, - n) e™ K (- cm)k 5" B Jm
5 k= k! k=0 k ?



Hence

K o
[ - &™) M- M1 = 3 g (v, K o o"
k=0
= F(C: YJ: KJ) ()
where the coefficients Ck are defined by
( k
C, (v,, K,) = A,*B H
TSRS L NI i )
C (YJ, 1,
Cl(yj, Kj) = -kj « 2 cos (mYJ) ,
K, (K, - 1)
=_J J .
Cz(YJ., Kj) - 2 cos (2mYJ) + K;j KJ s
-K, (K, - 1)(K, - 2)
c3(Yj’ KJ) = J J cj 2 cos (31an)
31
K, K,(K, -1)
-ﬂ— —J—%—Z cos (mYJ) s
K. (K, = 1)(K; = 2)(K, - 3)
CH(YJ, KJ) = MJ J 2 cos (lleJ)
K, K,(K, - 1)(K, - 2) K, (K, - 1)]°
+ T;!L JJ 37 J 2 cos (2mYJ) +[—J—%—!—:|

Since the following binomial expansions

(1o a1 k@ KE=D om KEK-1DEK-2)

31 31 T ’
=K
(1 + Cm) =1-Kcm+K(I2{!+ 1) 2m K(K+§3(K+2) LI



may be regarded as speclal limiting cases of equation (4), they may be written
as _

K ©
1-™ =5 ¢c(,%) . =5, o0 K,

=K ©

m _ ™ K km _ K
1+gh -k);_;ck(a,-g); =F, =, -3).

Thus equation (3) may now be expressed in terms of the products of the series
defined by equation (4)

1/%
K n
z=a"| K, 0, -f)-g'w(;, Y KD1 ¢ Fg, £, 5‘;—1>d—§-, (5)
o 4
which becomes
1/%
z = u"[ [kg(; Dk§km-2]dC. (6)

In equation (6), n 1s the number of vertices between two adjacent lines of
symmetry, and the series Dkgkm is the final product of the series in the

integrand of equation (5). By integrating the series term by term, one ob-
tains the mapping function for the type of star shown in figure 2 in the
following form:

1-km
= Dt
Z = f(c) = e

Since the use of such a mapping function expressed in an Infinite series is
prohibitive, a polynomial mapping function which 1s derived by truncating
the iInfinite series is used in a practical application.

The behavior of the mapping function defined by equation (7) is controlled
by three types of parameters. They are the normalizing coefficient «, the
vertex angles (K1 and Kz), and the spacing of the images of vertices on the

unit clircle (Y1 and Yz)’ In order to describe the behavior of the mapplng
function, the role of each type of parameter wlll be discussed in the following
pages.

The mapping functions for other types of stars, such as shown in figure 3,
can be derived in a simllar manner as equation (7) was obtained. Therefore, no
further elaboration will be made on other types of stars, except for brief

8



graphical presentatlions of interesting mappings obtained for such stars. See
the figures presented at the end of the report.

(a) (b)

.
~

(e) (d)

Flgure 3.- Segments of various four-pointed stars.

PARAMETERS CONTROLLING THE SIZE AND SHAPE

The normalizing coefficient o 1s determined in such a way that the
distance from the center to the outer tip of a star is a unlty and that one
of the star's major axes of symmetry is oriented along the x-axis. It is
readily evaluated by letting 2z = 1 be the lmage of ¢ = 1; i.e.

o« Dk

l=a s .

k=0 1 - km

As a convenient means of classifying various stars, the term "degree"
will be used hereafter. The degree of a star corresponds to the number of
vertices counted between any two adjacent axes of symmetry, excluding the
ones located on the axes. An m-pointed star possesses 2m axes of symmetry
and an n~-th degree star has (n + 1) straight sides between adjacent axes



of symmetry. For instance, the four-pointed star shown in figure 2 i1s a second
degree star and has three straight line segments between adjacent axes of sym-
metry; namely, Sl, 82 and Sa' It has of course eight axes of symmetry.

The shape of a star 1s determined by its exterlor vertex angles ard the
relative dimensions of its slides. Except for the case of a zero degree star,
the angles alone are not sufficient to describe the configuration of a star,

In general the angles are specified in terms of Kj and the relative dimen-~

sions of the sides are controlled by YJ --the position of the vertex lmages
on the unit circle,

Due to its symmetric property, a star can be uniquely defined by specifying
its configuration only in a sector bounded by two adjacent axes of symmetry.
The angle between adjacent axes of symmetry is n/m radians and it is preserved
in the course of the conformal transformation. Therefore the mapping function
for an n-th degree star is a function of only KJ and YJ (J=1,2, eeey n)

determined from the small sector of the star. It is due to this fact that the
form of the general mapping formula is greatly simplified in the case of a star,
as 1t has been 1llustrated in the preceding derivation.

The number of independent side dimensions Sk equals the degree of a star;
that is, for an n-th degree star only n of Sk are independent, even though
there are (n + 1) of Sk between adjacent axes of symmetry. It has been ob-
served that S
relationship:

Ty be approximately expressed in terms of YJ by the following

Y
S x_____l(___’ k=l, 2, seee s (9)
k=1

™
J=1
It is very little affected by YJ if J » k. For any particular type of a
star, a more exact relationship between Sk and Yj (3 =1, 2, eeey n) can

be made available in the form of graphs. These graphs will allow one to
determine Yk in an expedient manner for a high degree of accuracy. As an

example, these graphical relations for a second-degree star are presented in
Appendix A, together with an explanation of the usage.

EFFECT OF TRUNCATION

The general mapping formula for a polygon with k vertices 1ls expressible
in the following form:
K K Kk dc

£(e) = A | (6-15)  (g=-15) wee (-5 K % 4 B (10)
Z

Z

10



in which the J-th binomial is assoclated with the J-th vertex and in fact
it plays tne major role of controlling the mapping in the vicinity of that
vertex. This may be readily seen from an inspection of the derivative of the
mapping function (10), K, K Kk

£'(z) = Ac°2 (c-12z)) (¢~ cz) 2 (g~ ck) .

The argument of the derivative 1is the sum of the arguments of the individual
terms;

Arg £(c) = Arg (Ac™) + K Arg (- ) +K Arg (2= g,) + .o .

If we let ¢ vary from ;j- e to %y + ey, (L<J <k, € <<1); then the
magnitude of the change in the argument of the J-th binomial (g - cj)KJ

is KJ n, while that of any other binomlal is less than K me, (2 #3)

The polynomial for the J-th binomial (g - g, %3 , which is obtained
by expanding (g - cJ)KJ into a truncated power series, is evidently a very

rapidly varying function in the vicinity of the Jj-th vertex. On the other
hand, the polynomials corresponding to the other binomials are all slowly
varying functions in the same vicinity. Therefore, the accuracy of mapping
in the vicinity of the Jj-th vertex depends primarily on the number of terms

retained in the polynomial for (Z - CJ)KJ, and very little on the other

polynomials. The more terms retained in a particular polynomial, the more
accurate the mapplng of the corresponding vertex region becomes. Hence,
with regard to the effect of truncating the power series for the J-th
binomial, the following remark 1s in order:

Remark I: Mapping of the vicinity of the Jj-th vertex is primarily controlled
by the J-th binamial; hence the accuracy of the mapping function
in that vicinity depends on the accuracy (the extent of truncation)
of the corresponding polynomial, e.g., equation (4).

The exact number of terms to be retained in a specific polynomial
F(z, YJ’ Kj) depends upon the accuracy desired at the J-th vertex and the

configuration of the star. This is determined in a practical problem through
a trial and error method. However, it has been observed that the polynomial
for a vertex with a positive exterior angle is more rapidly converging than
that for a vertex with a negative exterior angle. For the same accuracy of
mapping, therefore, fewer terms are required in the former polynomial than

in the latter. The positlve exterior angle is measured in a counter-clockwise
direction.

An inspection of the typical series for each case will clearly illustrate
this fact. For each case, consider the followlng typical series:

1-0f=1-g + BE2D 2 KK =LK =205, (11)

11
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The ratio of the successive terms of each series 1s glven by

R; = %%}%é (for the vertex with a positive exterior angle),
and R; = ;}{;%f (for the vertex with a negative exterior angle).

This ratio being a measure of the rate of convergence, we can conclude from

+ -
=Ry
that series (11) converges faster than series (12). Hence, the following con-
cluding remark is in order:

Remark II: For the same accuracy of mapping, the polynomial for a vertex with
a positive exterior angle requires a lesser number of terms than
the polynomial for a vertex with a negative exterior angle.

The geometrical significance of truncation is that of mapping a figure nearly
congruent to the prescribed polygon but with rounded corners. In the case of
a star, it is observed that the polynomial mapping function maps a unit circle
onto a so-called curvilinear polygon.

CONSTRUCTION OF MAPPING FUNCTIONS

A general method of constructing a mapping function for a simple star
will be first described. Then it wlll be shown how this method may be simply
extended to the case of a doubly connected star. The mapping of a simple star
is to be understood as the conformal mapping of the exterior of the unit circle
to the exterior of a star, and that of a doubly connected star as the conformal
transformation of an annular region onto a domain whose inner and outer bound-
arles are star-shaped and circular.,

Starting with two sets of known data (Kj and SJ) which are prescribed

for any given star, the construction of an approximate mapping function for
a simple star is carried out by the following steps:

1. Estimate the 1mage spacing v, from the given side dimensions S,.

J J

2. Generate the polynomials, equation (4), for each vertex; l.e.,
F(z; Yj’ Kﬁ), J=0,1, 2y eeey n+ 1.

3. Truncate the polynomials according to the accuracy of mapping desired
at each vertex.

12



4, Multiply the polynomials together, integrate the product and then
normalize the resulting mapping function,

5. Plot the mapped star and refine the congruency as needed, by modifying
the spacing of vertex images and/or varying the number of terms in the
polynomials,

Some of the steps (i.e. steps 1, 2, and 4) have been already explained in
full detall. The third step must be accomplished by a trial and error method,
which 1s greatly facilitated by the two useful remarks previously stated in
conmnection with the effect of truncation. In fact, for the second degree
stars upper and lower bounds on the number of terms have been established.

For the maximum error of 5% in the dimensions of SJ, the polynomial for the

vertex with a positive exterior angle requires only 4 to 10 terms, and that
with a negative angle 5 to 25 terms. That this method does provide a simpler
mapping function for a certain class of stars 1s demonstrated in figure 17;
the mapping of a falrly deep star is accomplished by a l2-term polynomial.

The secord degree star shown in figure 2 was examined in detail with
the ald of a digital computer. Accurate relatlonshlps between YJ and SJ

were completely established and are presented by graphs in Appendix A. A
working FORTRAN program for the IBM 7040 is now available which automatically
generates a mapping function and plots the mapped star. Thils program auto-
matically determines the coefficients of the polynomials F(z; YJ’ KJ) for

each vertex from the input data of Kj and YJ, truncates the polynomials

after the prescribed number of terms, produces a mapping function by the
step number 4 and plots the mapped star. It takes less than twenty seconds
of computing time to construct and plot a mapping function in this manner.
Examples of mapped stars, from second to fourth degree, are also presented
in Appendix B.

The polynomial mapping function for a simple star may also be used for
the mapping of a doubly connected star since the function

= 1-km
= f(g) = 4

reduces to the following equation for ¢ >> 1;
£f(g) 2E; * ¢ .

This shows that a clrcle in g-plane whose radius 1s considerably greater than
one is mapped onto a figure in z-plane which 1s nearly equal to a circle with
an approximate radius of E0 | ¢ |. For a second-degree star with four points,

the image of | ¢ | = 2 1s found to vary from a circle by not more than 2%.
For practical purposes, equation (13) performs a satisfactory mapping of doubly
connected stars.

13



CONCLUDING REMARKS

The success of complex variable methods in elasticity hinges upon the
availability and simplicity of a mapping function. Previous lnvestigators
(ref. 2 and 3) have derived mapping functions by approximate methods involv-
ing some variation of the collocation technique. However, these approaches
require very extensive computations and usually yield very lengthy polynomial
mapping functions.

Present investigation has attacked the specific problem of mapping a
unit circle onto a star-shaped region by the Schwarz-Chrilstoffel transforma-
tion. By capitalizing on the high degree of symmetry of star-shaped polygons,
a generalized method was developed which ylelds directly the desired mapping
function. Some camparisons have shown that equivalent polynomial mapping
functions may be generated with less than one-fourth the number of terms
required by the collocation technique.

This new method has two drawbacks, the most important being that for
higher degree stars not covered by the figures in Appendix A a high speed
digital computer is a prerequisite to the development of satisfactory mapping
functions. The second restriction is that the graphical presentation of the
relations between Y and Sk for third and higher degree stars becomes

extremely difficult except for specific cases. However, excellent first
approximation to the Y, can be obtained from the figures presented in

Appendix A, and accurate maps of some fifth degree stars have been developed
without extra effort.

In general, the Schwarz-Christoffel method developed herein does provide
a simpler mapping function for that class of stars which can be approximated
by polygons, and 1t offers some unique advantages. Some of these are: unique
and automatic determination of the coefficlents of a polynomlal from three
geometric parameters, automatic satisfaction of the conformality condition,
and the fact that the variables have simple geometric interpretations.

Perhaps the chilef advantage is that this method will provide the simplest

possible polynomial mapping function, as one may easily truncate the polynomial
to the lowest number of terms that will accompllish the desired transformation.

14



APPENDIX A. ANALYSIS OF SECOND-DEGREE STARS

A detailled analysls was performed on a second-degree star with KO = K3 = 0,

see flgure 2. This star has four independent parameters: the number of star
points, m; the angle K, (note that K, =1/m-~ K1)5 and the relative side

dimensions S, and S,. The mapping function is given by equation (5);

1/%
F(g) = a J F(zg, Yis K1

) + F(z, 7, K,) %g .

0
The purpose of this analysis was twofold: (a) To determine the relation-
ships between the relative dimensions Sk and the vertex image spacings Y

in terms of YJ’ m and K,; (b) To determine the effects on congruency of
truncating the polynomial F(z, YJ, KJ) in order to establish limits of

truncation. A program for the IBM 7040 computer was developed to perform
these tasks, and the results are shown in the following figures and a table.

The graphs are plots of Sk versus Yk for different values of m and
K,, and table 1 contains the limits of truncation. The dimensionless parameter
S, 1s defined as the distance between the (k = 1)-th and k~th vertices

divided by the distance O0A (see figure 2). Only the usage of the graphs
will be outlined here; that is, how to determine Y, and Y, from the given

data m, X,, S; and S,. The procedure may be broken down into the follow-

ing steps.
(1) From the given values of m and Kl’ select the appropriate pailr

(S, and Sz) of graphs. The angles need not agree exactly, but

select graphs whose K1 is nearest the given angle.

Since S, is nearly independent of Y, the following procedure will

quickly yleld the correct image spacings, Y, and Y2.

(2) From the graph of S, versus Yl/(n/m)s find the maximum and minirum
values of Y, for the glven S1 and calculate the average value.

(3) On the graph of S, versus (Y, - Y,)/(v/m - Y,), move along the
approprilate Yl/(n/m) = constant line to the specified S, value,
and read off the corresponding value of (y, - yl)/(n/m - yl).

(4) On the graph used in the step (2), find a corrected value of Y,
by moving along the line (Y, - Y,)/(v/m - ¥,) = constant (which
was found in step 3) to the specified S, value, and read off a
new value of Y,.

15



(5) Repeat steps (2) through (4) until Y, and Y, converge.

For example, with m = 4, K = Dy S1 = S2 = .2, the values found from figures

4 and 5 ave v, = 0.395/(n/H) and (v, - Y,)/(n/b - ¥,) = 0.43.

These charts are very dependent on the number of star points, m, as an
increase in m will primarily cause a significant decrease in the average
slope of the curves. Also these curves are not independent of K,, but the
variation of K, will have a small effect on Sk' It has been observed that.
for a particular S, and Sz’ a 24% increase in K, will cause an 8% increase

in v,/(n/m) and an 8% decrease in (Y, - v,)/(7/m - Y).

No. of F(z, Y1’ Kl) F(z, Yo Kz)
Star Points S, No. of Terms S, No. of Terms

M S1 < 25 3 82 < .3 6

25 < S1 < 5 b 3 <5, < .6 8

15 <8 < LU 4 3 <8, <.7 9

8 S, < .1 y S, < LU 8

ol < Sl < '3 5 Qu < Sz < 07 13

Table 1.-Truncation limits of second degree stars for a maximum error of
5% in S .
k

The following two pages show four examples of the effect of truncation.
The first three plots illustrate that a polynomial with a very low number of
terms can yield a mapping with congruency. The fourth plot shows that trunca-~
tion to two terms will cause a smooth rounding of a vertex.
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APPENDIX B, EXAMPLES OF VARIOUS STARS MAPPED BY EQUATION (5)

The following plots are included to illustrate the type and variety of
maps which can be simply obtained from equation (5). Each example was con-
structed by following the algorithm presented in the section of "CONSTRUCTION
OF MAPPING FUNCTIONS."

These plots were made on an IBM paper printer with a capacity of six
characters per inch vertically and ten characters per inch horizontally.
Thus each point (asterisk) may be in error by + 1/12" vertically and
+ 1/20" horizontally, making these plots somewhat crude in places. Hence
These plots should not be used to examine the mapping near vertices, but
they will give qualitative information on the degree of congruency of the
map.
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Figure 18.~ A U-point second degree star.
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